03第三部分:思维训练要做好
1.一题多解,锻炼孩子的变式思维
培养学生的变式思维,就要让学生敢于创新、习惯创新。老师可以在讲课过程中故意出错,让学生来思考、矫正,这样上课时学生就不会处于被动接受的状态,而始终处于主动思考的状态:老师讲得对不对?还有没有其他方法?此外,老师还可以采用以下方法:一节课只讲一道题,一题多解,方法越来越好;一道题今天讲,明天再讲,常讲常新。一方面,让学生充分感受到数学的乐趣,另一方面可以培养学生变式思维的意识和能力,这种意识和能力对孩子将来的人生发展都大有裨益。
变式思维中,对称思想是很重要的一种。对称思想往往可以解决很多问题。举个现实生活中的例子来说,日本一个生产味精的企业有段时间利润一直上不去,就召开了一个公司内部的研讨会。会上大家拿出了很多方法,比如降低成本等等,但因效果不明显,都没有被采用。后来进行消费者调研时,有个家庭主妇说,味精都是瓶装的,上面有很多小眼儿,可以增大小眼儿,这样做饭时大家就用得多了,用得多了,销售量就上去了。这条建议被采纳并且实施,果然效果很好。其实员工是从生产的源头来考虑问题,而家庭主妇是从消费一方来考虑问题,这就是思维的对称性。
学数学的过程中,一道题从已知走向结果、从结果走向已知也都体现了思维的对称性。有道很经典的题目:1/2+1/4+1/8+…+1/256。可以从前往后算,1/2+1/4=3/4,3/4+1/8=7/8……,发现规律后就会知道,最后答案等于255/256,也可以在式子最后加一个1/256(这也是构造思想的体现),从后往前算,得出得数1,然后再减去多余的1/256。这都是思维对称性的体现。
2.一解多题,锻炼归纳思维
每个学段所用到的数学方法其实就几种。可以经常采用一解多题的方法来指导学生弄通某一种数学方法,比如这节课就只讲方程思想,下节课讲另一个专题。
3.用发展的眼光给孩子讲题
也就是说,要用发展的眼光给学生讲题,还是这道老题:1/2+1/4+1/8+…+1/256。可以鼓励学生用通分的方法来做,在做的过程中,延伸到等差、等比数列等高中才学到的知识点。孩子以后会学得轻松。